• Users Online: 234
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 


 
 
Table of Contents
SHORT RESEARCH COMMUNICATION
Year : 2018  |  Volume : 55  |  Issue : 3  |  Page : 242-244

An investigation about the possible role of cattle and goats as reservoir hosts for Leishmania donovani in Bangladesh


Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh

Date of Submission30-Nov-2017
Date of Acceptance23-Feb-2018
Date of Web Publication4-Jan-2019

Correspondence Address:
Shirin Akter
Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh–2202
Bangladesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-9062.249484

Rights and Permissions
  Abstract 


Keywords: Bangladesh; reservoir; visceral leishmaniasis


How to cite this article:
Alam MZ, Rahman MM, Akter S, Talukder MH, Dey AR. An investigation about the possible role of cattle and goats as reservoir hosts for Leishmania donovani in Bangladesh. J Vector Borne Dis 2018;55:242-4

How to cite this URL:
Alam MZ, Rahman MM, Akter S, Talukder MH, Dey AR. An investigation about the possible role of cattle and goats as reservoir hosts for Leishmania donovani in Bangladesh. J Vector Borne Dis [serial online] 2018 [cited 2019 Jan 23];55:242-4. Available from: http://www.jvbd.org/text.asp?2018/55/3/242/249484



Visceral leishmaniasis (VL), an important tropical disease, is caused by the intracellular protozoan parasites of the Leishmania donovani complex. VL is a serious public health problem in the Indian subcontinent, and there are 40,000–45,000 cases per year in Bangladesh[1]. VL, caused by L. infantum (synonym L. chagasi) is a zoonotic disease, and is distributed mainly in Mediterranean countries, the Middle East, Asia, and South America; with canine and other mammalian species acting as reservoir hosts[2],[3]. Transmission of VL caused by L. donovani is still considered to be anthroponotic in the Indian Subcontinent although the only known vector, Phlebotomus argentipes is zoophilic in nature. Earlier studies have shown that P. argentipes prefer to feed on both bovine and human blood[4],[5]. In India, the cattle density is considered as one of the risk factors for the increased number of VL cases in human[6]. Anti-L. donovani antibodies has been detected in different domestic animals including cattle in eastern Sudan[7]. In Nepal, Leishmania DNA has been detected in cows, buffaloes and goats[8] and recently in goats in India[9]. These reports support the hypothesis of an animal reservoir for VL transmission in Bangladesh.

Studies investigating the role of domestic animals as reservoir of VL in Bangladesh are limited. In a recent study, Leishmania infection in stray dogs in VL-endemic areas of Bangladesh was detected by serological and molecular tests[10]. Anti-Leishmania antibodies were detected in cattle from an endemic area in Bangladesh, but no parasitic DNA was detected by PCR[11]. Literature search did not reveal any earlier study in Bangladesh investigating the domestic goats for the presence of Leishmania infection. Traditionally, cattle and goats are kept very close to or within the human households, and therefore, it is possible that they are frequently bitten by the vector sandflies. Therefore, it is important to study the possible role of domestic animals in VL epidemiology. This study was aimed to investigate the probable role of cattle and goats as reservoir hosts for L. donovani in a VL-endemic area of Bangladesh.

Venous blood (5 ml) was collected in tubes containing disodium ethylenediaminetetraacetate (Na2 EDTA) from 258 cattle and 122 goats in Trishal and Fulbaria Upazila (subdistricts) of Mymensingh district in Bangladesh, which are the two most endemic areas for VL. The samples were immediately kept in a chilled ice box and transferred to the Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh. The blood samples were centrifuged at 875 × g for 10 min at 4°C and serum samples were also stored at 4°C. Buffy coat samples were stored in lysis buffer for DNA isolation. As there is no established central ethical committee on animal experimentation in Bangladesh, blood samples were collected after establishing collaborations with local veterinarians and with consent from the animal owners.

Separated sera samples were used for rK39 immunochromatographic (ICT) test (InBios International, Inc., Seattle, WA, USA) according to the manufacturer's instructions. In positive cases two bands—A positive test band and the control band appeared on the test strip, within 5 min. Appearance of only the control band was indicative of negative for rK39 test.

DNA was extracted from the buffy coat of all the samples by using the DNeasy blood and tissue kit (Qiagen, Germany) according to manufacturer's instructions.

ITS1-PCR assays were performed to amplify the internal transcribed spacer 1 (ITS1) region in the ribosomal operation using the primers LITSR (5'-CTG GAT CAT TTT CCG ATG-3') and L5.8S (5'-TGA TAC CAC TTA TCG CAC TT-3')[12]. The amplification cycles included initial heating at 95°C for 2 min, followed by 35 cycles consisting of denaturation at 95°C for 20 sec, annealing at 53°C for 30 sec and extension at 72°C for 1 min, with a final extension step at 72°C for 6 min. PCR products were resolved by 1.5% agarose gel electrophoresis in 1×Tris-Borate-EDTA buffer and visualized using UV light after staining with RedSafe Nucleic Acid Staining Solution (iNtRON Biotechnology Inc., Sungnum, Korea). A positive control with L. donovani genomic DNA and a negative control with no-DNA water were included.

Anti-Leishmania antibodies was detected in 18 samples (10 cattle and 8 goats) out of 380 (4.73%) in rK39 ICT dipstick test [Figure 1]. None of the seropositive and seronegative samples was found positive for the detection of Leishmania DNA by ITS1-PCR.
Figure 1: rK39 immunochromatographic strip test results. Strips with only the control band represent negative results, while strip with both a control band and a positive test band (arrow marked) reflect positive results.

Click here to view


Although the transmission of VL between domestic animals and human is a great concern, information on the VL infection in animals in the subcontinent is lacking. The possible role of domestic animals in the transmission of anthroponotic VL has been previously studied in Bangladesh[13], but the role of animals as risk factors or reservoir hosts was not established.

The detection of anti-Leishmania antibodies but not Leishmania DNA in cattle in this study corroborate with the findings of previous study by Alam et al[11]. In Sudan, screening of several domestic animals with the direct agglutination test (DAT) detected reaction rates above the cut-off titres in donkeys (68·7%), cows (21·4%), goats (8·5%), and wild rats (5·5%)[7]. In another recent study in India, L. donovani DNA was detected in 20 rK39 positive blood samples from goats and one sample from a cow indicating that goats are potential animal reservoirs of human VL in that area[9].

In the present study, no evidence of Leishmania DNA was found by ITS1-PCR in seropositive and seronegative cattle and goat samples. Here, we used buffy coat for DNA extraction, which is the third most convenient sample after spleen and bone marrow, but preferred in this study as collection of whole blood is less invasive, repeatable and easily accepted by dog owners. Therefore, aliquots of buffy coat may not have enough Leishmania DNA to be amplified by ITS1-PCR and even the sensitivity of ITS1-PCR in previous studies was not found 100%[14],[15]. Furthermore, cross-reacting antibodies inferred by other infections might result in antibody responses in the cattle and goats. Earlier studies demonstrated that anti-Leishmania antibodies can be cross-reactive with tuberculosis, toxoplasmosis, and malaria for human sera[16],[17]. However, this study did not investigate such cross-reactivity.

The absence of Leishmania DNA is suggestive of no role of cattle and goats as reservoirs of VL in this endemic focus. However, further detailed studies are recommended to reveal the potential role of other domestic and wild animals on which sandflies feed in the VL epidemiology in Bangladesh.

Conflict of interest

The authors declare no conflict of interest.


  Acknowledgements Top


The study was supported by the Ministry of Science and Technology of Bangladesh (Project No. BS. 23, 2014–2015).



 
  References Top

1.
Bern C, Chowdhury R. The epidemiology of visceral leishmaniasis in Bangladesh: Prospects for improved control. Indian J Med Res 2006; 123: 275–88.  Back to cited text no. 1
    
2.
Mauricio IL, Stothard JR, Miles MA. The strange case of Leishmania chagasi. Parasitol Today 2000; 16: 188–9.  Back to cited text no. 2
    
3.
Dereure J, El-Safi SH, Bucheton B, Boni M, Kheir MM, Davoust B, et al. Visceral leishmaniasis in eastern Sudan: Parasite identification in humans and dogs; host-parasite relationships. Microbes Infect 2003; 5: 1103–8.  Back to cited text no. 3
    
4.
Mukhopadhyay AK, Chakravarty AK. Blood meal preference of Phlebotomus argentipes and Ph. papatasi of north Bihar, India. Indian J Med Res 1987; 86: 475–80.  Back to cited text no. 4
    
5.
Palit A, Bhattacharya SK, Kundu SN. Host preference of Phlebotomus argentipes and Phlebotomus papatasi in different biotopes of West Bengal, India. Int J Environ Health Res 2005; 15(6): 449–54.  Back to cited text no. 5
    
6.
Barnett PG, Singh SP, Bern C, Hightower AW, Sundar S. Virgin soil: The spread of visceral leishmaniasis into Uttar Pradesh, India. Am J Trop Med Hyg 2005; 73(4): 720–5.  Back to cited text no. 6
    
7.
Mukhtar MM, Sharief AH, el Saffi SH, Harith AE, Higazzi TB, Adam AM, et al. Detection of antibodies to Leishmania donovani in animals in a kala-azar endemic region in eastern Sudan: A preliminary report. Trans R Soc Trop Med Hyg 2000; 94(1): 33–6.  Back to cited text no. 7
    
8.
Bhattarai NR, Auwera GV, Rijal S, Picado A, Speybroeck N, Khanal B, et al. Domestic animals and epidemiology of visceral leishmaniasis, Nepal. Emerg Infect Dis 2010; 16: 231–7.  Back to cited text no. 8
    
9.
Singh N, Mishra J, Singh R, Singh S. Animal reservoirs of visceral leishmaniasis in Bihar, India. J Parasitol 2013; 99: 64–7.  Back to cited text no. 9
    
10.
Akter S, Alam MZ, Nakao R, Yasin G, Katakura K. Molecular and serological evidence of Leishmania infection in stray dogs from visceral leishmaniasis-endemic areas of Bangladesh. Am J Trop Med Hyg 2016; 9: 795–9.  Back to cited text no. 10
    
11.
Alam MS, Ghosh D, Khan MG, Islam MF, Mondal D, Itoh M, et al. Survey of domestic cattle for anti-Leishmania antibodies and Leishmania DNA in a visceral leishmaniasis endemic area of Bangladesh. BMC Vet Res 2011; 7: 27.  Back to cited text no. 11
    
12.
el Tai NO, Osman OF, el Fari M, Presber W, Schönian G. Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg 2000; 94: 575–9.  Back to cited text no. 12
    
13.
Bern C, Hightower AW, Chowdhury R, Ali M, Amann J, Wagatsuma Y, et al. Risk factors for kala-azar in Bangladesh. Emerg Infect Dis 2005; 11(5): 655–62.  Back to cited text no. 13
    
14.
Bensoussan E, Nasereddin A, Jonas F, Schnur LF, Jaffe CL. Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. J Clin Microbiol 2006; 44 (4): 1435–9.  Back to cited text no. 14
    
15.
Al-Jawabreh A, Schoenian G, Hamarsheh O, Presber W. Clinical diagnosis of cutaneous leishmaniasis: A comparison study between standardized graded direct microscopy and ITS1-PCR of Giemsa-stained smears. Acta Trop 2006; 99(1): 55–61.  Back to cited text no. 15
    
16.
Badaro R, Eulalio MC, Benson D, Freire M, Miranda JC, Pedral-Sampaio D, et al. Sensitivity and specificity of a recombinant Leishmania chagasi antigen in the serodiagnosis of visceral leishmaniasis. Arch Inst Pasteur Tunis 1993; 70 (3–4): 331–2.  Back to cited text no. 16
    
17.
Burns JM, Shreffler WG, Benson DR, Ghalib HW, Badaro R, Reed SG. Molecular characterization of a kinesin-related antigen of Leishmania chagasi that detects specific antibody in African and American visceral leishmaniasis. Proc Natl Acad Sci USA 1993; 90 (2): 775–9.  Back to cited text no. 17
    


    Figures

  [Figure 1]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Acknowledgements
References
Article Figures

 Article Access Statistics
    Viewed77    
    Printed2    
    Emailed0    
    PDF Downloaded35    
    Comments [Add]    

Recommend this journal