Journal of Vector Borne Diseases

RESEARCH ARTICLE
Year
: 2019  |  Volume : 56  |  Issue : 3  |  Page : 189--199

A novel quinoline-appended chalcone derivative as potential Plasmodium falciparum gametocytocide


Himank Kumar1, Ishan Wadi2, Vinod Devaraji3, CR Pillai2, Sujit Kumar Ghosh4 
1 Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra; Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
2 ICMR–National Institute of Malaria Research, New Delhi, India
3 Department of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai, India
4 Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India

Correspondence Address:
Dr Sujit Kumar Ghosh
Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur–440 010, Maharashtra
India

Background & objectives: Malaria has remained a global health problem despite the effective control and treatment measures. In the backdrop of drug resistance, developing novel hybrid molecules targeting the sexual stages (gametocytes) of the human malaria parasite Plasmodium falciparum is of great significance. Recently, chalcone- based polyphenols have generated a great interest in the malaria research community worldwide due to their ease of synthesis and significant biological activity. The primary objective of this study was to investigate the interaction of a newly synthesized quinoline-appended chalcone derivative (ADMQ) with gametocyte specific proteins, Pfg 27 and Pfs 25 and explore its in vitro gametocytocidal potential. Methods: The characterization of ligand-protein interactions at the atomistic level was done by a simulation strategy that combines molecular docking and molecular dynamics (MD) simulation in a coherent workflow. The X-ray crystal structure of Pfg 27 was retrieved from protein data bank and Pfs 25 was built using the Iterative Threading ASSembly Refinement (I-TASSER) server. The detailed interaction of both ADMQ and a known gametocytocidal agent, methylene blue (MB) (used as a positive control) with gametocyte proteins Pfg 27 and Pfs 25 was studied with a 50 ns explicit MD simulation. The ligand binding pose in terms of glide score, molecular mechanics-generalized born surface area (MM-GBSA) binding energies, protein-ligand root-mean-square-deviation (RMSD) and secondary structure elements (SSE) changes were analyzed accordingly. The direct effect of ADMQ on structural integrity of P. falciparum gametocytes was also examined using in vitro microscopy. Results: The analogous Glide score and MM-GBSA free energy of binding indicated stable interactions for both ADMQ and MB harboured in the active site of targeted gametocyte proteins, Pfg 27 and Pfs 25, separately. Explicit MD simulation by Desmond software package indicated similar distinguishable conformational changes in the active site of target polypeptide chain due to the specific accommodation of ADMQ molecule. The simulation also manifested comparable mechanistic profile in terms of protein-ligand RMSD and changes in secondary structure elements (SSE). Further, ADMQ treatment was found to adversely affect the structural integrity of gametocytes, which resulted in appearance of vesicles protruding from the gametocytes. Interpretation & conclusion: The consolidated in silico molecular modeling and in vitro study described herein may give an insight into the interaction patterns of quinoline-chalcone hybrids with critical gametocyte proteins in the mosquito. This study will possibly pave the way for further exploration of similar heterocyclic quinoline-chalcone hybrids to open up new avenues in drug candidate development against P. falciparum gametocytes.


How to cite this article:
Kumar H, Wadi I, Devaraji V, Pillai C R, Ghosh SK. A novel quinoline-appended chalcone derivative as potential Plasmodium falciparum gametocytocide.J Vector Borne Dis 2019;56:189-199


How to cite this URL:
Kumar H, Wadi I, Devaraji V, Pillai C R, Ghosh SK. A novel quinoline-appended chalcone derivative as potential Plasmodium falciparum gametocytocide. J Vector Borne Dis [serial online] 2019 [cited 2020 Aug 11 ];56:189-199
Available from: http://www.jvbd.org/article.asp?issn=0972-9062;year=2019;volume=56;issue=3;spage=189;epage=199;aulast=Kumar;type=0