• Users Online: 755
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
RESEARCH ARTICLE
Year : 2019  |  Volume : 56  |  Issue : 2  |  Page : 111-121

Isovaleric acid and avicequinone-C are Chikungunya virus resistance principles in Glycosmis pentaphylla (Retz.) Correa


1 Centre for Plant Biotechnology and Molecular Biology, College of Horticulture, Kerala Agricultural University, Thrissur, Kerala, India
2 Centre for Plant Biotechnology and Molecular Biology; Distributed Information Centre (Department of Biotechnology), College of Horticulture, Kerala Agricultural University, Thrissur, Kerala, India
3 Distributed Information Centre (Department of Biotechnology), College of Horticulture, Kerala Agricultural University, Thrissur, Kerala, India
4 Department of Plant Pathology, College of Horticulture, Kerala Agricultural University, Thrissur, Kerala, India

Correspondence Address:
Deepu Mathew
Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-9062.263719

Rights and Permissions

Background & objectives: Oral administration of tender leaf extract of Glycosmis pentaphylla is traditionally known to prevent the chikungunya virus infection. Even with wide usage, the antiviral components in this plant are neither identified nor characterized. This study was carried out with the objectives of profiling the phytocompounds in this plant through LC-MS/MS and to identify the active antiviral constituents and their drug-likeliness through molecular docking. Methods: Phytocompounds were extracted hydro-alcoholically from powdered plant parts and analyzed using LC-MS/MS. Based on mass-to-charge ratio from LC-MS/MS, compounds were identified and used as ligands for molecular docking against chikungunya target proteins. The active principles were subjected to ADME/T analysis to verify their drug-likeliness. Results: The docking results and ADME/T evaluation showed that the compounds, isovaleric acid and avicequinone- C have good interaction with the protein targets and hence could be the antiviral principles of the selected plant. These compounds presented acceptable drug properties and hence could be carried forward to in vivo studies for drug development. Interpretation & conclusion: The antiviral properties of G. pentaphylla are known since time-immemorial. This study revealed the probable interactions after the oral administration of tender leaves of Glycosmis in preventing the chikungunya virus infection and paves the path for designing future plant-based drugs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed6738    
    Printed292    
    Emailed0    
    PDF Downloaded715    
    Comments [Add]    
    Cited by others 3    

Recommend this journal