• Users Online: 215
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Reader Login
Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Most popular articles (Since June 15, 2013)

  Archives   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
Malaria elimination in India—The way forward
Susanta K Ghosh, Manju Rahi
January-March 2019, 56(1):32-40
DOI:10.4103/0972-9062.257771  PMID:31070163
The World Malaria Report 2018 published by the World Health Organization highlights that no significant progress in reducing global malaria cases was achieved for the period 2015–2017. India carries 4% of the global malaria burden and contributes 87% of the total malaria cases in South-East Asia. India is in malaria elimination mode, and set targets for malaria-free status by 2030. Diagnosis and treatment of asymptomatic falciparum malaria cases continues to be a challenge for health care providers. To overcome these hurdles innovative solutions along with the existing tools and strategies involving vector control, mass drug administration, disease surveillance hold the key to solve this gigantic health problem.
  11,697 1,517 17
Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria
Kiran K Dayananda, Rajeshwara N Achur, D Channe Gowda
January-March 2018, 55(1):1-8
DOI:10.4103/0972-9062.234620  PMID:29916441
Malaria, caused by the protozoan parasites of the genus Plasmodium, is a major health problem in many countries of the world. Five parasite species namely, Plasmodium falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, cause malaria in humans. Of these, P. falciparum and P. vivax are the most prevalent and account for the majority of the global malaria cases. In most areas of Africa, P. vivax infection is essentially absent because of the inherited lack of Duffy antigen receptor for chemokines on the surface of red blood cells that is involved in the parasite invasion of erythrocytes. Therefore, in Africa, most malaria infections are by P. falciparum and the highest burden of P. vivax infection is in Southeast Asia and South America. Plasmodium falciparum is the most virulent and as such, it is responsible for the majority of malarial mortality, particularly in Africa. Although, P. vivax infection has long been considered to be benign, recent studies have reported life-threatening consequences, including acute respiratory distress syndrome, cerebral malaria, multi-organ failure, dyserythropoiesis and anaemia. Despite exhibiting low parasite biomass in infected people due to parasite’s specificity to infect only reticulocytes, P. vivax infection triggers higher inflammatory responses and exacerbated clinical symptoms than P. falciparum, such as fever and chills. Another characteristic feature of P. vivax infection, compared to P. falciparum infection, is persistence of the parasite as dormant liver-stage hypnozoites, causing recurrent episodes of malaria. This review article summarizes the published information on P. vivax epidemiology, drug resistance and pathophysiology.
  8,496 1,935 11
Insights into the early liver stage biology of Plasmodium
Lokesh D Kori, Neena Valecha, Anupkumar R Anvikar
January-March 2018, 55(1):9-13
DOI:10.4103/0972-9062.234631  PMID:29916442
Even though malaria is preventable and curable, it has become a serious threat to mankind. In 2016, there were an estimated 216 million cases of malaria across the world. The biology of its causative agent, i.e. Plasmodium parasite is full of complex mechanisms. There are five Plasmodium species responsible for malaria in humans, viz. Plasmodium falciparum, P. vivax, P. malariae, P. ovale and recently identified P. knowlesi that normally infect apes. In humans, malaria is spread by the injection of Plasmodium sporozoites through the bite of infectious Anopheles’ female mosquito during their blood meal. From the time of entry into human skin till the development into the asexual forms, the parasite undergoes several transformations. This review attempts to understand the science behind the pre-erythrocytic liver stage of Plasmodium. Research articles explaining parasite biology, cell-traversal, transformation stages, cell-egress process, etc. were retrieved from PubMed and google scholar database. Various known and unknown mechanisms and strategies used by the malaria parasite P. berghei in rodent models have been discussed in this review. Limited or no information was available for humans, due to technical feasibility and complexity of parasite’s life cycle. Hence, it was concluded that there is an urgent need to investigate the hepatic invasion, traversal and egress mechanism of P. falciparum and P. vivax for developing novel therapeutics to fight against malaria.
  5,236 1,241 2
Role of gut inhabitants on vectorial capacity of mosquitoes
Lekshmi Jayakrishnan, Ambalaparambil Vasu Sudhikumar, Embalil Mathachan Aneesh
April-June 2018, 55(2):69-78
DOI:10.4103/0972-9062.242567  PMID:30280704
Mosquito-borne diseases are spreading at an alarming rate. Globally millions of deaths occur due to the diseases transmitted by mosquitoes, next to AIDS and tuberculosis. Several methods have been used to control these vectors and the diseases caused by them. Earlier studies have shown the potential role of mosquito gut inhabitants on disease transmission. Their findings can be used as an innovative approach for devising strategies to modify the survival of mosquitoes by reducing their lifespan, reproduction and disease transmission abilities. In this study, microbiome of the three genera of mosquitoes, namely Aedes, Anopheles, and Culex along with their vectorial capacity have been reviewed for assessing their role in mosquito control and transmission. Relevant articles were accessed using different databases, including LILACS, Embase, Science Direct and PubMed from inception to June 2017. The search keywords included “Aedes”, “Anopheles”, “Culex”, “gut inhabitants”, “vectors”, and “mosquito”. The titles, abstract, and keywords of the retrieved articles were screened, and eligible research articles were sorted. The review indicates that paratransgenesis may be considered as a versatile and effective strategy to eradicate the spurt of mosquito transmitting diseases. Enterobacter species is the most common type of gram-negative bacteria associated with the gut of all the three genera of mosquitoes. It was found to have a beneficial effect on humans as it helps in destroying dreadful disease-transmitting vectors. These symbiotic qualities of the microbes need to be thoroughly investigated further to reveal their antipathogenic effect on the vector.
  5,134 972 7
The relationship between skin rash and outcome in dengue
Ajay Kumar Mishra, Anu Anna George, K.P.P. Abhilash
October-December 2018, 55(4):310-314
DOI:10.4103/0972-9062.256567  PMID:30997892
Background & objectives: Dengue fever (DF) is a common cause of acute febrile illness. Skin involvement is seen in more than half of the patients. This study was aimed to compare the clinical profile and outcome in DF patients with or without skin involvement. Methods: This study included all the patients with DF from the acute febrile illness database of a tertiary care health centre in south India. These patients were further subgrouped into SP and SN (skin involvement positive and negative) based on the presence and absence of skin rash. Differences in clinical presentation, laboratory parameters, disease course, morbidity and outcome among patients with DF with or without skin rash were recorded and analysed statistically. Results: In total 387 patients (>16 yr) with DF were enrolled into the study. Among these 55 patients had evidence of skin rash. Presence of history of overt bleeding (OR = 4.96, p = 0.027) including gum bleeding (OR = 1.17, p = 0.23), epistaxis (OR = 5.52, p = 0.04), and haematuria (OR = 6.41, p = 0.01) were more among patients with SP as compared to SN. The SP patients were found to have lower levels of platelets during the disease course. Patients with SP had a higher percentage of platelet transfusion which was statistically significant. There was no difference in organ dysfunction and mortality among both the groups. Interpretation & conclusion: Cutaneous involvement, though common, is not pathognomonic and can help in dengue diagnosis. Adult patients with skin rash can develop worsening thrombocytopenia requiring platelet transfusion. However, there are limited data to suggest that such patients have a worse outcome and higher mortality.
  5,358 399 6
MERA India: Malaria Elimination Research Alliance India
Manju Rahi, Anupkumar R Anvikar, OP Singh, P Jambulingam, P Vijayachari, Aparup Das, Sanghamitra Pati, Kanwar Narain, RR Gangakhedkar, Neeraj Dhingra, Balram Bhargava
January-March 2019, 56(1):1-3
DOI:10.4103/0972-9062.257766  PMID:31070158
  4,972 612 2
Computer-aided analysis of phytochemicals as potential dengue virus inhibitors based on molecular docking, ADMET and DFT studies
Iqra Qaddir, Nouman Rasool, Waqar Hussain, Sajid Mahmood
July-September 2017, 54(3):255-262
DOI:10.4103/0972-9062.217617  PMID:29097641
Background & objectives: Dengue fever, caused by dengue virus (DENV), has become a serious threat to human lives. Phytochemicals are known to have great potential to eradicate viral, bacterial and fungal-borne diseases in human beings. This study was aimed at in silico drug development against nonstructural protein 4B (NS4B) of dengue virus 4 (DENV4). Methods: A total of 2750 phytochemicals from different medicinal plants were selected for this study. These plants grow naturally in the climate of Pakistan and India and have been used for the treatment of various pathologies in human for long-time. The ADMET studies, molecular docking and density functional theory (DFT) based analysis were carried out to determine the potential inhibitory properties of these phytochemicals. Results: The ADMET analysis and docking results revealed nine phytochemicals, i.e. Silymarin, Flavobion, Derrisin, Isosilybin, Mundulinol, Silydianin, Isopomiferin, Narlumicine and Oxysanguinarine to have potential inhibitory properties against DENV and can be considered for additional in vitro and in vivo studies to assess their inhibitory effects against DENV replication. They exhibited binding affinity ≥−8 kcal/mol against DENV4-NS4B. Furthermore, DFT based analysis revealed high reactivity for these nine phytochemicals in the binding pocket of DENV4-NS4B, based on ELUMO, EHOMO and band energy gap. Interpretation & conclusion: Five out of nine phytochemicals are reported for the first time as novel DENV inhibitors. These included three phytochemicals from Silybum marianum, i.e. Derrisin, Mundulinol, Isopomiferin, and two phytochemicals from Fumaria indica, i.e. Narlumicine and Oxysanguinarine. However, all the nine phytochemicals can be considered for in vitro and in vivo analysis for the development of potential DENV inhibitors.
  4,553 967 18
Native larvivorous fish diversity as a biological control agent against mosquito larvae in an endemic malarious region of Ranchi district in Jharkhand, India
Manoj Kumar Das, M Rajesh Kumar Rao, AK Kulsreshtha
January-March 2018, 55(1):34-41
DOI:10.4103/0972-9062.234624  PMID:29916446
Background & objectives: Mosquitoes are responsible for transmitting several diseases, including malaria, dengue, chikungunya, filariasis, and yellow fever, etc. Release of larvivorous fishes is one of the cheapest method of vector management approach, with long suppression of mosquito population. The present study identifies the native larvivorous fishes and evaluates their potential larvivoracity for biological control of mosquito larvae in an endemic malarious region. Methods: During the year 2012–13, an ecological descriptive study was carried out in diverse aquatic habitats of fish species found in different areas of Ranchi district, in Jharkhand state of India. Fishes were captured using fishing nets, and identified and classified according to the available keys. Their larvivorous potential was graded according to their feeding potential. Data on current conservation status as well as their abundance were also recorded and analysed. Results: In total, 30 larvivorous fish species belonging to seven orders, 10 families and 21 genera were identified. Order Cypriniformes and the family Cyprinidae were the most ascendant group constituting 66.7 and 60%, respectively. The grading assessment of larvivorous potential for different fish species revealed that, Colisa fasciatus possess maximum larvivoracity (+ + + + +). According to the conservation, assessment and management plan (CAMP, 1998), 60% species were at lower risk near threat (LRnt), while 86.7% species were at least concerned (LC) as per the IUCN, 2017 categorisation. All fish species preferred to inhabit in freshwater. Maximum species occurrence was found in the river (63.3%). Only 30% species were bottom feeders (BF). Interpretation & conclusion: The larvivoracity and habitat distribution analysis indicated that C. fasciatus, Oreochromis mossambica, Esomus danricus, Oryzias melastigma, Puntius sophore, P. ticto, Rasbora daniconius, R. elegans, Aplocheilus panchax, and Danio (B) rerio possess high-level larvivorous potentiality in nature and are recommended for malaria control in the study area. There is an increasing pressure on the fish fauna, of facing several threats, such as fishing, human interference, loss of habitat, overexploitation, pollution, siltation, trade, and diseases. Therefore, periodic survey and monitoring of fish biodiversity, demarcation of breeding sites, field level research study on the efficacy of these fishes, and public awareness on establishment of larvivorous fish ponds should be adopted as a part of the vector management approach in the endemic malarious region of Ranchi district in Jharkhand, India.
  4,909 543 5
Geographic distribution and spatial analysis of Leishmania infantum infection in domestic and wild animal reservoir hosts of zoonotic visceral leishmaniasis in Iran: A systematic review
M Mohebali, E Moradi-Asl, Y Rassi
July-September 2018, 55(3):173-183
DOI:10.4103/0972-9062.249125  PMID:30618442
Visceral leishmaniasis (VL) is an important parasitic disease which is endemic in different parts of Iran; and domestic and wild canines are principal reservoir hosts of the disease. The objective of this study was to review the spatial distribution of canine VL (CVL) caused by Leishmania infantum in domestic and wild canines in different geographical areas of Iran. An extensive literature search was conducted in different international and national databases, including Cochrane, MEDLINE/PubMed, Scopus, Web of Science and Iran Medex to find articles with the words “visceral leishmaniasis in Iran” in their titles and “canine visceral leishmaniasis in Iran” or “feline visceral leishmaniasis in Iran” or “accidental reservoir hosts of visceral leishmaniasis in Iran” in their subtitles, irrespective of the type and duration of study. Screening of the irrelevant articles from total 36,342, yielded 61 eligible articles. More than 93% of the studies were carried out on domestic dogs (Canis familiaris, n = 57) and the remaining were on other carnivores such as wild canines including foxes (Vulpes vulpes, n = 4), jackals (C. aureus, n = 6) and wolves (C. lupus, n = 6); while studies on domestic cats (Felis catus, n = 3) as well as desert rodents (n = 2) were rare. The average rate of L. infantum infections reported among domestic dogs using direct agglutination test (DAT) in Iran was 12.5%. The highest prevalence rate (14%) was reported from the northwest regions of the country where VL is endemic. The review indicates that CVL is endemic in various parts of Iran and domestic dogs are the main and potential reservoir hosts of the disease. Other carnivores, such as domestic cats and some species of desert rodents (Cricetulus migratorius, Mesocricetus auratus and Meriones persicus) seem to be playing a role in the maintenance of transmission cycle of L. infantum in the endemic areas of the disease.
  4,584 801 9
Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites
Norashiqin Misni, Zurainee Mohamed Nor, Rohani Ahmad
January-March 2017, 54(1):44-53
Background & objectives: Many essential oils have been reported as natural sources of insect repellents; however, due to high volatility, they present low repellent effect. Formulation technique by using microencapsulation enables to control the volatility of essential oil and thereby extends the duration of repellency. In this study, the effectiveness of microencapsulated essential oils of Alpinia galanga, Citrus grandis and C. aurantifolia in the lotion formulations were evaluated against mosquito bites. Methods: Essential oils and W,W-Diethyl-3-methylbenzamide (DEET) were encapsulated by using interfacial precipitation techniques before incorporation into lotion base to form microencapsulated (ME) formulation. The pure essential oil and DEET were also prepared into lotion base to produce non-encapsulated (NE) formulation. All the prepared formulations were assessed for their repellent activity against Culex quinquefasciatus under laboratory condition. Field evaluations also were conducted in three different study sites in Peninsular Malaysia. In addition, Citriodiol® (Mosiquard®) and citronella-based repellents (KAPS®, MozAway® and BioZ Natural®) were also included for comparison. Results: In laboratory conditions, the ME formulations of the essential oils showed no significant difference with regard to the duration of repellent effect compared to the microencapsulated DEET used at the highest concentration (20%). It exhibited >98% repellent effect for duration of 4 h (p = 0.06). In the field conditions, these formulations demonstrated comparable repellent effect (100% for a duration of 3 h) to Citriodiol® based repellent (Mosiguard®) (p = 0.07). In both test conditions, the ME formulations of the essential oils presented longer duration of 100% repellent effect (between 1 and 2 h) compared to NE formulations. Interpretation & conclusion: The findings of the study demonstrate that the application of the microencapsulation technique during the preparation of the formulations significantly increases the duration of the repellent effect of the essential oils, suggesting that the ME formulation of essential oils have potential to be commercialized as an alternative plant-based repellent in the market against the mosquitoes.
  4,235 1,124 -
Aedes vittatus (Bigot) mosquito: An emerging threat to public health
AB Sudeep, P Shil
October-December 2017, 54(4):295-300
DOI:10.4103/0972-9062.225833  PMID:29460858
Aedes vittatus (Bigot) mosquito is a voracious biter of humans and has a geographical distribution throughout tropical Asia, Africa and the Mediterranean region of Europe. It is predominantly a rock-hole breeder, though it can breed in diverse macro- and micro-habitats. The mosquito plays an important role in the maintenance and transmission of yellow fever (YFV), dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses. It has been implicated as an important vector of YFV in several African countries as evidenced by repeated virus isolations from the mosquito and its potential to transmit the virus experimentally. Similarly, DENV-2 has been isolated from wild caught Ae. vittatus mosquitoes in Senegal, Africa which has been shown to circulate the virus in sylvatic populations without causing human infection. Experimental studies have shown replication of the virus at a low scale in naturally infected mosquitoes while high rate of infection and dissemination have been reported in parenterally infected mosquitoes. Natural isolation of ZIKV has been reported from Senegal and Cote d’Ivoire from these mosquitoes. They were found highly competent to transmit the virus experimentally and the transmission rate is at par with Ae. leuteocephalus, the primary vector of ZIKV. A few CHIKV isolations have also been reported from the mosquitoes in Senegal and other countries in Africa. Experimental studies have demonstrated high susceptibility, early dissemination and efficient transmission of CHIKV by Ae. vittatus mosquitoes. The mosquitoes with their high susceptibility and competence to transmit important viruses, viz. YFV, DENV, CHIKV and ZIKV pose a major threat to public health due to their abundance and anthropophilic behaviour.
  4,442 862 7
Aetiology of acute encephalitis syndrome in Uttar Pradesh, India from 2014 to 2016
Parul Jain, Shantanu Prakash, Danish N Khan, Ravindra Kumar Garg, Rashmi Kumar, Amit Bhagat, V Ramakrishna, Amita Jain
October-December 2017, 54(4):311-316
DOI:10.4103/0972-9062.225835  PMID:29460860
Background & objectives: It is imperative to know the aetiology of acute encephalitis syndrome (AES) for patient management and policy making. The present study was carried out to determine the prevalence of common aetiological agents of AES in Uttar Pradesh (UP) state of India. Methods: Serum and/or CSF samples were collected from AES patients admitted at Gandhi Memorial and Associated Hospital, King George's Medical University, Lucknow, a tertiary care centre, UP during 2014–16. Cerebrospinal fluid (CSF) and serum samples from cases were tested for IgM antibodies against Japanese encephalitis virus (anti-JEV), and dengue virus (anti-DENV) by ELISA; and for enterovirus, herpes simplex virus (HSV) and varicella zoster virus (VZV) by real-time PCR. Serum samples of cases having sufficient CSF volume, were also tested for anti-scrub typhus IgM antibodies and for Neisseria meningitides, Streptococcus pneumoniae and Haemophilus influenzae. Results: JEV and DENV (8% each) were the most common identified aetiology from the 4092 enrolled patients. Enterovirus, HSV and VZV, each were detected in <1% AES cases. Co-positivity occurred in 48 cases. Scrub typhus (31.8%) was the most common aetiology detected. Haemophilus influenzae and S. pneumoniae were detected in 0.97 and 0.94% cases, respectively, however, N. meningitides was not detected in any of the cases. About 40% of the JEV/DENV positive AES cases were adults. The gap between the total number of AES cases and those with JEV/ DENV infection increased during monsoon and post-monsoon seasons. Interpretation & conclusion: Scrub typhus, JEV and DENV are the main aetiological agents of AES in UP. DENV and JEV can no longer be considered paediatric diseases. The prevalence of non-JEV/DENV aetiology of AES increases in the monsoon and post-monsoon seasons.
  4,237 781 5
Some considerable issues concerning malaria elimination in India
Ashwani Kumar
January-March 2019, 56(1):25-31
DOI:10.4103/0972-9062.257770  PMID:31070162
Malaria elimination is a health priority of India for the national development and to meet UN sustainable development goals. In this article, an attempt has been made to highlight some of the key issues that need attention and consideration. These include addressing the gaps in malaria burden and adopting District Health Information System (DHIS) for real time data gathering, transfer and analysis for rapid response. The article highlights threat to malaria elimination from human migration, asymptomatic malaria, P. malariae as a neglected species, need for updating vector information and devising strategies to control relay vector species especially in the high burden states of India. Additionally, scale-up of vector control interventions, integrated vector management and enhancement of vector control capacity and capability have been emphasized. It is suggested that process, performance and progress indicators for malaria elimination may be clearly spelt out and disseminated. What are the data needs for malaria elimination certification, must be well-understood? Lessons learnt by the countries that have eliminated malaria recently shall be of great value to malaria elimination efforts in India.
  4,152 725 2
Urinary schistosomiasis in Ebonyi State, Nigeria from 2006 to 2017
Ogochukwu C Chiamah, Patience O Ubachukwu, Chioma O Anorue, Sowechi Ebi
April-June 2019, 56(2):87-91
DOI:10.4103/0972-9062.263721  PMID:31397382
Urinary schistosomiasis, caused by Schistosoma haematobium is very common in Nigeria, with Ebonyi State implicated to have the highest prevalence in the southeastern part of the country. The aim of this review was to estimate the status of urinary schistosomiasis in the State with regards to the elimination goals of World Health Organization (WHO). A comprehensive search of published articles on urinary schistosomiasis in Ebonyi State, Nigeria from 2006 to 2017 was conducted using Google Scholar, PubMed and African Journals Online (AJOL) databases. Out of 26 retrieved articles, 15 met the inclusion criteria. The MetaXL software was used to compute the pooled prevalence of urinary schistosomiasis using the random effect model and results are presented as forest plot. Based on meta-analysis output, the pooled prevalence of urinary schistosomiasis was 26.02% [95% Confidence Interval (CI) = 17.91–35.04%]. The pooled prevalence was higher before 2014, the year when treatment with praziquantel (PZQ) was started. Of the senatorial zones, Ebonyi North had the highest pooled prevalence of 34.57% (95% CI = 10.50–61.32%). In addition, the prevalence of the disease was higher when all the age groups were sampled (31.33%; 95% CI = 12.75–51.98%) than when only schoolchildren were used as sampling population (25.23%; 95% CI = 15.66-35.93%). The pooled prevalence revealed that despite the mass drug distribution (MDA) of PZQ in the State, there is continued transmission of urinary schistosomiasis. Hence, if the WHO elimination goal of the disease has to be met, focused control and elimination programmes along with intense complementary public-health interventions are necessary.
  3,959 854 2
Larvicidal activity of Ricinus communis extract against mosquitoes
Nisha Sogan, Neera Kapoor, Himmat Singh, Smriti Kala, A Nayak, BN Nagpal
October-December 2018, 55(4):282-290
DOI:10.4103/0972-9062.256563  PMID:30997888
Background & objectives: Vector control strategies play significant role in reducing the transmission of malaria, dengue and other vector-borne diseases. The control of vector population using synthetic insecticides has resulted in development of insecticide resistance and negative effects on humans and environment. The present investigation evaluated the larvicidal potential of methanol, dichloromethane and hexane extracts of leaves and seeds of Ricinus communis (castor) plant against the early IV instar larvae of the dengue vector, Aedes aegypti, and malaria vector, Anopheles culicifacies. Methods: Plant extracts were screened for their efficacy against Ae. aegypti and An. culicifacies using WHO standard larval susceptibility test method. Dose response bioassay was performed to get lethal concentrations. Further, gas chromatography-mass spectroscopy (GC-MS) analysis was carried out to identify the bioactive chemical constituents of the extracts of R. communis. Toxicity of the extracts towards non-target organism, Poecilia reticulata was also evaluated. Results: The leaf and seed extracts of R. communis showed significant mortality against the larvae of Ae. aegypti and An. culicifacies at concentrations of 31.25, 62.5, 125, 250, 500 ppm; and 2, 4, 8, 16, 32, 64 ppm, respectively. At 24 h of the exposure period, the larvicidal activities were highest for the methanol extract of seeds with LC50 15.52 and 9.37 ppm and LC90 45.24 and 31.1 ppm for Ae. aegypti and An. culicifacies, respectively. The methanol extract of seeds and leaves was found to be safe towards non-target organism, P. reticulata. The GC-MS profile showed that seed extracts were having higher concentration of stigmasterol (7.5%), β-sitosterol (11.48%), methyl linoleate (2.5%), vitamin E (11.93%), and ricinoleic acid (34%) than the leaf extracts. Interpretation & conclusion: The seed extract of R. communis has better larvicidal activity than the leaf extract and can be used as an effective larvicide against mosquitoes. The non-toxicity of the extracts towards P. reticulata further suggests that these plant extracts could be used along with predatory fishes in integrated vector control approaches.
  4,103 688 4
Pilot survey of mosquitoes (Diptera: Culicidae) from southeastern Georgia, USA for Wolbachia and Rickettsia felis (Rickettsiales: Rickettsiaceae)
Matthew L Anderson, R Chris Rustin, Marina E Eremeeva
April-June 2019, 56(2):92-97
DOI:10.4103/0972-9062.263714  PMID:31397383
Background & objectives: Mosquito surveillance is one of the critical functions of local health departments, particularly in the context of outbreaks of severe mosquito-borne viral infections. Unfortunately, some viral and parasitic infections transmitted by mosquitoes, manifests non-specific clinical symptoms which may actually be of rickettsial etiology, including Rickettsia felis infections. This study tested the hypothesis that mosquitoes from southeastern Georgia, USA may be infected with Rickettsia felis and Wolbachia, an endosymbiotic bacterium of the order Rickettsiales. Methods: Specimens of the five most common mosquito species occurring in the region were collected using gravid and light-traps and identified using morphological keys. Mosquitoes were then pooled by species, sex, trap and collection site and their DNA was extracted. Molecular methods were used to confirm mosquito identification, and presence of Wolbachia and R. felis. Results: Wolbachia DNA was detected in 90.8% of the mosquito pools tested, which included 98% pools of Cx. quinquefasciatus Say (Diptera: Culicidae), 95% pools of Ae. albopictus Skuse (Diptera: Culicidae), and 66.7% of pools of Cx. pipiens complex. Samples of An. punctipennis Say (Diptera: Culicidae) and An. crucians Wiedemann (Diptera: Culicidae) were tested negative for Wolbachia DNA. Three genotypes of Wolbachia sp. belonging to Group A (1 type) and Group B (2 types) were identified. DNA of R. felis was not found in any pool of mosquitoes tested. Interpretation & conclusions: This study provides a pilot data on the high presence of Wolbachia in Cx. quinque-fasciatus and Ae. albopictus mosquitoes prevalent in the study region. Whether the high prevalence of Wolbachia and its genetic diversity in mosquitoes affects the mosquitoes’ susceptibility to R. felis infection in Georgia will need further evaluation.
  3,806 810 3
Malaria elimination: Using past and present experience to make malaria-free India by 2030
Altaf A Lal, Harsh Rajvanshi, Himanshu Jayswar, Aparup Das, Praveen K Bharti
January-March 2019, 56(1):60-65
DOI:10.4103/0972-9062.257777  PMID:31070168
Malaria causes significant morbidity and mortality worldwide. Since 2005, malaria cases have been declining globally with many countries having eliminated malaria and several other countries heading towards malaria elimination. The World Health Organization’s Global Technical Strategy for malaria targets at least 90% reduction in case incidences and mortality rates, and elimination in 35 countries by 2030. India along with other Asia-Pacific countries has pledged to eliminate malaria by 2030. Sustainable vector control and case management interventions have played a pivotal role in malaria control leading to elimination. Malaria is complex in India due to the presence of multiple parasites and vectors species, asymptomatic cases, resistance against antimalarials and insecticides, social, demographic, cultural and behavioural beliefs. Therefore, maintaining zero indigenous malaria transmission and preventing malaria through importation of cases requires well-planned multi-pronged intervention strategies. This article provides insights into the past and present malaria control and elimination efforts that may be useful for the national programme for eliminating malaria from India by 2030.
  3,870 532 5
Prevalence of disease vectors in Lakshadweep Islands during post-monsoon season
Jayalakshmi Krishnan, L Mathiarasan
July-September 2018, 55(3):189-196
DOI:10.4103/0972-9062.249127  PMID:30618444
Background & objectives: Increase of vector-borne diseases (VBDs) in India has posed a question on the situation in Lakshadweep Islands, where VBDs are reported from time-to-time. The present investigation was aimed to assess the faunastic situation of the prevailing vectors along with their breeding sites in different islands of the Lakshadweep. Methods: Extensive surveys were carried out from November 2017 to January 2018 (post-monsoon season) randomly in the nine inhabited islands of Lakshadweep for conducting faunastic studies on mosquitoes and to know the basic binomics like breeding and resting preference of mosquitoes. The study islands included, Kavaratti, Agatti, Chetlat, Bitra, Amini, Kadmath, Andrott, Kalpeni and Kiltan. Both immature and adult collections were carried out by standard/appropriate sampling techniques. The obtained data were calculated and analysed in terms of different entomological indices Results: A total of 3356 mosquitoes were collected during the study period which comprised of 16 species from nine genera. Out of the 16 species, six belonged to mosquito vectors. The collection included malaria vector, Anopheles stephensi; Japanese encephalitis vector, Culex tritaeniorhynchus; Bancroftian filariasis vector, Cx. quinquefasciatus; Brugian filariasis vector, Mansonia uniformis; and dengue and chikungunya vectors, Stegomya albopicta and St. aegypti. Stegomya albopicta was the most predominant species observed constituting 54% of the catch, followed by Cx. quinquefasciatus, An. stephensi, Cx. tritaeniorhynchus, and St. aegypti constituting 10.5, 6, 3 and 1.2%, respectively. Apart from vector species many non-vectors such as Heizmannia chandi, An. subpictus, An. varuna, Cx. sitiens, Cx. minutissimus, Cx. rubithoracis, Fredwardsius vittatus, Lutzia fuscana, Malaya genurostris and Armigeres subalbatus were also present in the study area. In Kavaratti Island, the capital of Lakshadweep, a non-vector species of sandfly, Sergentomyia (Parrotomyia) babu was observed during the indoor resting collection. The major breeding sites which supported various mosquito species included, discarded plastic containers, tree holes, open sintex tanks (water storage tanks), unused wells, discarded tyres, discarded iron pots, unused and damaged boats, cement tanks, pleated plastic sheets, coral holes, pits and irrigation canals, discarded washing machines, and Colocasia plant leaf axils. Breteau index ranged between 65.3 and 110, CI ranged between 63.64 and 72.41; and HI ranged between 38.46 and 70 among the various islands. Interpretation & conclusion: Entomological indices such as house index (HI), breteau index (BI) and pupal index (PI) were high in all the nine islands and exceeded the threshold levels specified by WHO, indicating high risk for dengue virus transmission in case of outbreaks. Occurrence of vector as well as non-vector species indicates that the global change in climate is causing notable changes in terms of breeding of vector and non-vector species in the islands. With the reported cases of VBDs and the presence of vectors species in Lakshadweep Islands, a stringent control measure needs to be implemented at the Lakshadweep Islands.
  3,768 524 1
Anopheline mosquitoes behaviour and entomological monitoring in southwestern Ethiopia
Kidane Lelisa, Abebe Asale, Behailu Taye, Daniel Emana, Delenasaw Yewhalaw
July-September 2017, 54(3):240-248
DOI:10.4103/0972-9062.217615  PMID:29097639
Background & objectives: Despite a tremendous expansion in the financing and coverage of malaria control programmes, the disease continues to be a global health threat. This study was conducted to assess the entomological parameters of anopheline mosquitoes, viz. species composition, abundance, longevity, behaviour and infectivity rates in Kersa district, Jimma zone, southwestern Ethiopia. Methods: Mosquito collection was carried out from each selected household in each of the nine selected study villages of Kersa district, using CDC light-traps and pyrethrum spray catches (PSCs) for seven months (June to December 2014). Mosquito count data were log transformed before analysis and the data were analyzed using SPSS software package version 16.0. Analysis of variance (ANOVA) was employed to compare means and Tukey’s post-hoc test was used for mean separation. Results: In total, 1559 adult female anopheline mosquitoes, representing at least three species were collected from the study villages. Of these, 1122 were collected by CDC light-traps and the rest 437 were collected by PSCs. Anopheles gambiae s.l. (71.8%) was the most abundant species, followed by An. coustani s.l. (22%) and An. pharoensis (6.2%). The mean monthly density of anopheline mosquito species was highly significant (p < 0.001). Significantly (p <0.05) higher population of An. gambiae s.l. were trapped indoor than outdoor. However, outdoor mean densities ofAn. pharoensis and An. coustani s.l. were significantly (p < 0.001) higher than indoor mean densities. The longevity of An. gambiae s.l. was higher in the months of June, July and August (mean 7.32 days) and lower in the months of October, November and December (mean 2.94 days). Two An. gambiae s.l. specimens were found positive for Plasmodium vivax 210 polymorphs and the overall infectivity rate was estimated to be 1.04%. Interpretation & conclusion: This study could contribute to the understanding of anopheline mosquitoes with respect to their composition, dynamics, distribution and behaviour in Kersa district, for evidence based malaria vector control programmes, mainly in the appropriate timing of the indoor residual spray programme.
  3,695 571 2
The impact of Zika virus infection on human neuroblastoma (SH-SY5Y) cell line
Natthanej Luplertlop, San Suwanmanee, Watcharamat Muangkaew, Sumate Ampawong, Thitinan Kitisin, Yong Poovorawan
July-September 2017, 54(3):207-214
DOI:10.4103/0972-9062.217611  PMID:29097635
Background & objectives: An increase in Zika virus (ZIKV) epidemic during the last decade has become a major global concern as the virus affects both newborns and adult humans. Earlier studies have shown the impact of ZIKV infection in developing human foetus. However, effective in vitro model of target cells for studying the ZIKV infection in adult human neurons is not available. This study aimed to establish the use of human neuroblastoma cell line (SH-SY5Y) for studying an infection of ZIKV in vitro. Methods: ZIKV growth kinetics, viral toxicity, and SH-SY5Y cell vialibity were determined after ZIKV infection in SH-SY5Y cells in vitro. ZIKV-infected SH-SY5Y cells were morphologically analysed and compared with nonhuman primate Vero cells. Furthermore, the susceptibility of SH-SY5Y cells to ZIKV infection was also determined. Results: The results showed that ZIKV efficiently infects SH-SY5Y cell lines in vitro. Gradual changes of several cellular homeostasis parameters including cell viability, cytotoxicity, and cell morphology were observed in ZIKV-infected SH-SY5Y cells when compared to mock-treated or non-human primate cells. Interestingly, ZIKV particles were detected in the nucleoplasmic compartment of the infected SH-SY5Y cells. Interpretation & conclusion: The results suggest that ZIKV particle can be detected in the nucleoplasmic compartment of the infected SH-SY5Y cells beside the known viral replicating cytoplasmic area. Hence, SH-SY5Y cells can be used as an in vitro adult human neuronal cell-based model, for further elucidating the ZIKV biology, and highlight other possible significance of Zika virus distribution through nuclear localization, which may correlate to the neuropathological defects in ZIKV-infected adult humans.
  3,138 1,119 7
Partnering to fight malaria in India: Past, present and future
Kirandeep Samby, Hanu Ramachandruni, Jaya Banerji, Jeremy N Burrows, Penny Grewal Daumerie, Rob A.M. Hooft van Huijsduijnen, Stephan Duparc, Timothy N.C. Wells
January-March 2019, 56(1):15-24
DOI:10.4103/0972-9062.257769  PMID:31070161
The global fight against malaria requires continual development of new tools. Collaborations in India have played a key role in MMV’s partnerships to discover, develop and deliver new medicines. Over the last decade, India has become a focal point of global medicinal chemistry, and combined with investments in basic science, this has led to the discovery of new potential drugs. India also brings significant experience to drug development, in clinical trials, but also in formulation and manufacturing. Finally, innovative new approaches in case management have streamlined impact at the level of communities and the patients.
  3,667 467 1
Latex agglutination test for rapid on-site serodiagnosis of Japanese encephalitis in pigs using recombinant NS1 antigen
MR Grace, Himani Dhanze, Pranita Pantwane, M Sivakumar, Baldev Raj Gulati, Ashok Kumar
April-June 2019, 56(2):105-110
DOI:10.4103/0972-9062.263717  PMID:31397385
Background & objectives: Japanese encephalitis (JE) is a mosquitoe-borne viral zoonotic disease and globally around three billion people are at the risk of disease. The occurrence of JE cases has shown a rising trend during last decade in India. Pig is the amplifying host for JE virus and serves as a suitable sentinel model for the prediction of disease outbreak in humans. The development of a diagnostic test that is suitable for surveillance of JE in pigs is the need of the hour. The existing tests require elaborate laboratory facilities which make their application in rural settings difficult. Therefore, realizing the need for a rapid test, efforts were made to standardize a latex agglutination test (LAT) for serodiagnosis of JE in pigs. Methods: Standardization of LAT by physical adsorption of recombinant NS1 (non-structural) protein of JE virus onto latex beads was done by altering six different variables, namely the antigen concentration, sensitization condition, surface blocking agent, blocking condition, particle concentration and reaction time. The standardized latex-protein complex was used for screening 246 pig serum samples under optimal conditions. Results: The test was standardized with a diagnostic sensitivity and specificity of 82.24 and 87.83%, respectively. Screening of 246 field pig serum samples using standardized LAT showed a seropositivity of 50.4%. The results were available within 5 min after addition of test serum sample to the sensitized beads. Interpretation & conclusion: The findings of the study highlight the potential of LAT as a rapid on-site assay for JE diagnosis in pigs which would aid in predicting JE outbreaks in humans.
  3,598 504 -
Malaria elimination drive in Odisha: Hope for halting the transmission
Madan Mohan Pradhan, PK Meherda
January-March 2019, 56(1):53-55
DOI:10.4103/0972-9062.257775  PMID:31070166
  3,617 433 7
Improving vector-borne pathogen surveillance: A laboratory-based study exploring the potential to detect dengue virus and malaria parasites in mosquito saliva
Vanessa R Melanson, Ryan Jochim, Michael Yarnell, Karen Bingham Ferlez, Soumya Shashikumar, Jason H Richardson
October-December 2017, 54(4):301-310
DOI:10.4103/0972-9062.225834  PMID:29460859
Background & objectives: Vector-borne pathogen surveillance programmes typically rely on the collection of large numbers of potential vectors followed by screening protocols focused on detecting pathogens in the arthropods. These processes are laborious, time consuming, expensive, and require screening of large numbers of samples. To streamline the surveillance process, increase sample throughput, and improve cost-effectiveness, a method to detect dengue virus and malaria parasites (Plasmodium falciparum) by leveraging the sugar-feeding behaviour of mosquitoes and their habit of expectorating infectious agents in their saliva during feeding was investigated in this study. Methods: Dengue virus 2 (DENV-2) infected female Aedes aegypti mosquitoes and P. falciparum infected female Anopheles stephensi mosquitoes were allowed to feed on honey coated Flinders Technical Associates —FTA® cards dyed with blue food colouring. The feeding resulted in deposition of saliva containing either DENV-2 particles or P. falciparum sporozoites onto the FTA card. Nucleic acid was extracted from each card and the appropriate real-time PCR (qPCR) assay was run to detect the pathogen of interest. Results: As little as one plaque forming unit (PFU) of DENV-2 and as few as 60 P. falciparum parasites deposited on FTA cards from infected mosquitoes were detected via qPCR. Hence, their use to collect mosquito saliva for pathogen detection is a relevant technique for vector surveillance. Interpretation & conclusion: This study provides laboratory confirmation that FTA cards can be used to capture and stabilize expectorated DENV-2 particles and P. falciparum sporozoites from infectious, sugar-feeding mosquitoes in very low numbers. Thus, the FTA card-based mosquito saliva capture method offers promise to overcome current limitations and revolutionize traditional mosquito-based pathogen surveillance programmes. Field testing and further method development are required to optimize this strategy.
  3,313 733 5
ICMR research initiatives enabling malaria elimination in India
Manju Rahi, Payal Das, P Jambulingam, P Vijayachari, Aparup Das, Sanghamitra Pati, Kanwar Narain, Ashwani Kumar, RR Gangakhedkar, Neena Valecha
January-March 2019, 56(1):4-10
DOI:10.4103/0972-9062.257772  PMID:31070159
  3,646 400 -